A modified shift-splitting method for nonsymmetric saddle point problems

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the generalized shift-splitting preconditioner for saddle point problems

In this paper, the generalized shift-splitting preconditioner is implemented for saddle point problems with symmetric positive definite (1,1)-block and symmetric positive semidefinite (2,2)-block. The proposed preconditioner is extracted form a stationary iterative method which is unconditionally convergent. Moreover, a relaxed version of the proposed preconditioner is presented and some proper...

متن کامل

A modification of the generalized shift-splitting method for singular saddle point problems

A modification of the generalized shift-splitting (GSS) method is presented for solving singular saddle point problems. In this kind of modification, the diagonal shift matrix is replaced by a block diagonal matrix which is symmetric positive definite. Semiconvergence of the proposed method is investigated. The induced preconditioner is applied to the saddle point problem and the preconditioned...

متن کامل

A Class of Nonsymmetric Preconditioners for Saddle Point Problems

For iterative solution of saddle point problems, a nonsymmetric preconditioning is studied which, with respect to the upper-left block of the system matrix, can be seen as a variant of SSOR. An idealized situation where the SSOR is taken with respect to the skew-symmetric part plus the diagonal part of the upper-left block is analyzed in detail. Since action of the preconditioner involves solut...

متن کامل

A Preconditioned Scheme for Nonsymmetric Saddle-Point Problems

In this paper, we present an effective preconditioning technique for solving nonsymmetric saddle-point problems. In particular, we consider those saddlepoint problems that arise in the numerical simulation of particulate flows—flow of solid particles in incompressible fluids, using mixed finite element discretization of the Navier–Stokes equations. These indefinite linear systems are solved usi...

متن کامل

Residual reduction algorithms for nonsymmetric saddle point problems

In this paper, we introduce and analyze Uzawa algorithms for non-symmetric saddle point systems. Convergence for the algorithms is established based on new spectral results about Schur complements. A new Uzawa type algorithm with optimal relaxation parameters at each new iteration is introduced and analyzed in a general framework. Numerical results supporting the efficiency of the algorithms ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 2017

ISSN: 0377-0427

DOI: 10.1016/j.cam.2016.11.032